
Math 331, Fall 2022 Test 2 Information

The second in-class test is scheduled to take place on Friday, November 18. It will
cover Chapter 3 and Chapter 4 up to and including Section 4.5. There will be no
questions specifically directed towards material from Chapters 1 and 2, but you still
need to know that material as background.

Questions on the test can include definitions, statements of theorems, short and
long essay questions about concepts, concrete problems, and short proofs. Any proofs
on the test will be ones that I believe should be straightforward, not requiring a great
deal of thought.

Some things that you should know about for the test:

differentiability of a function at a point; differentiability on an interval

partition of a closed bounded interval

upper and lower Riemann sums (U(P, f) and L(P, f))

infimum and supremum (inf and sup)

refinement of a partition

Riemann integrable function

the Riemann integral
∫ b

a
f

criteria for integrability

the Dirichlet function D(x) — discontinuous at every point; not Riemann integrable

Taylor polynomial, pn,a, for a function

sequences of real numbers and limits of sequences

bounded sequence

monotone sequence

Cauchy sequence

infinte series

geometric series

p-series

absolute convergence

conditional convergence

alternating series

convergence tests

sequences of functions

pointwise convergence of a sequence of functions

uniform convergence of a sequence of functions
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Some definitionss:

Definition. Let f be a function defined on an open interval containing a. We say that f is
differentiable at a if lim

x→a

f(x)−f(a)
x−a exists. We then denote the value of the limit as f ′(a).

Definition. A partition of [a, b] is a sequence of points P = {xo, x1, . . . , xn} such that
a = xo < x1 < · · · < xn = b. If P and Q are partitions, we say Q is a refinement of P if Q
contains every point that is in P .

Definition. Let f be a bounded function on [a, b], and let P = {xo, x1, . . . , xn} be a partition
of [a, b]. For i = 1, 2, . . . , n, let Mi = sup{f(x) |x ∈ [xi−1, xi]} and mi = inf{f(x) |x ∈
[xi−1, xi]}. We define the upper Riemann sum of f relative to the partition as U(P, f) =∑n

i=1Mi(xi−1 − xi), and we define the lower Riemann sum of f relative to the partition
as L(P, f) =

∑n
i=1mi(xi−1 − xi).

Definition. We say that a function f is integrable on [a, b] if it is bounded on [a, b] and
sup{L(P, f) |P is a partition of [a, b]} is equal to inf{U(P, f) |P is a partition of [a, b]}. In

that case, their common value is denoted
∫ b

a
f and is called the (Riemann) integral of f on

[a, b].

Definition. Let f be a function that is n times differentiable at a. The n-th degree Taylor

polynomial for f at a is defined to be pn,a(x) =
∑n

k=0
f (k)(a)

k!
(x− a)n.

Definition. A sequence {xn}∞n=1 converges to L ∈ R if for every ε > 0, there is an N ∈ N
such that for all n ≥ N , |xn − L| < ε. If a sequence is not convergent, then it diverges.

Definition. A sequence {xn}∞n=1 diverges to +∞ if for every M ∈ R, there is an N ∈ N
such that for all n ≥ N , xn > M . A sequence {xn}∞n=1 diverges to −∞ if for every M ∈ R,
there is an N ∈ N such that for all n ≥ N , xn < M .

Definition. A sequence {xn}∞n=1 is non-decreasing if for all n > m, xn ≥ xm. It is
non-decreasing if for all n > m, xn ≤ xm. It is monotone if it is non-increasing or
non-decreasing.

Definition. A sequence {xn}∞n=1 is Cauchy if for every ε > 0, there is an N ∈ N such that
for all n,m ≥ N , |xn − xm| < ε.

Definition. The n-th partial sum of a series
∑∞

k=1 ak is
∑n

k=1 ak.

Definition. A series converges to L ∈ R if the sequence of partial sums converges to L.
It diverges if it does not converge. It diverges to ±∞ if the sequence of partial sums
diverges to ±∞.

Definition. The series
∑∞

k=1 an converges absolutely if
∑∞

k=1 |an| converges. It con-
verges conditionally if it converges but does not converge absolutely.

Definition. The sequence of functions {fn}∞n=1 converges pointwise to a function f(x)
on an interval I if for every x ∈ I, lim

n→∞
fn(x) = f(x).

Definition. The sequence of functions {fn}∞n=1 converges uniformaly to a function f(x)
on an interval I if for every ε > 0, there is an N ∈ N such that for all n > N and all x ∈ I,
|fn(x)− f(x)| < ε,
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Some theorems:

Theorem. (Differentiability implies continuity.) If a function f is differentiable at a, then
f is continuous at a.

Theorem. (Properties of the derivative.) [Insert the constant multiple rule, sum rule,
product rule, quotient rule, and chain rule here.]

Theorem. (Rolle’s Theorem.) Suppose that the function f is continuous on the interval
[a, b] and is differentiable on (a, b), and that f(a) = f(b) = 0. Then there is a c ∈ [a, b] such
that f ′(c) = 0.

Theorem. (MVT—Mean Value Theorem.) Suppose that the function f is continuous
on the interval [a, b] and is differentiable on (a, b). Then there is a c ∈ (a, b) such that

f ′(c) = f(b)−f(a)
b−a .

Theorem. (Corollaries of the MVT.) If f ′(x) = 0 on an interval, then f is constant on that
interval. If f ′(x) = g′(x) on an interval, then f and g differ by a constant on that interval.
If f ′(x) > 0 on an interval, then f is increasing on that interval. If f ′(x) < 0 on an interval,
then f is decreasing on that interval. If f ′(x) ≥ 0 on an interval, then f is non-decreasing
on that interval. If f ′(x) ≤ 0 on an interval, then f is non-increasing on that interval.

Theorem. Let f be a bounded function on [a, b]. Let P and Q be partitions of [a, b] such
that Q is a refinement of P . Then L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

Theorem. Let f be a bounded function on [a, b], and let P and Q be any two partitions of
[a, b]. Then L(Q, f) ≤ U(P, f). [This implies that the set {L(P, f) |P is a partition of [a, b]}
is bounded above, that {U(P, f) |P is a partition of [a, b]} is bounded below, and also that
supP ({L(P, f)}) ≤ infP ({U(P, f)}).]

Theorem. Let f be a bounded function on [a, b]. Then f is Reimann integrable on [a, b] if
and only if for every ε > 0, there is a partition P of [a, b] such that U(P, f)− L(P, f) < ε.

Theorem. If f is a non-decreasing function, or is a non-increasing function, on [a, b], then
f is Riemann integrable on [a, b].

Theorem. If f is a continuous function on [a, b], then f is Riemann integrable on [a, b].

Theorem. (Linearity of the integral.) If f and g are Riemann integrable functions on
[a, b] and c ∈ R, then the functions cf and f + g are Riemann integrable on [a, b], and∫ b

a
cf = c

∫ b

a
f , and

∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Theorem. (Additivity of the integral.) If f is defined on [a, b] and a < c < b, then f is
Riemann integrable on [a, b] if and only if f is Riemann integrable on [a, c] and f is Riemann

integrable on [c, b], and in that case,
∫ b

a
f =

∫ c

a
f +

∫ b

c
f . [With the usual definitions of

∫ b

a
f

for b = a and for b < a, this formula is valid even if c is not between a and b, as long as f is
integrable on an interval that contains a, b, and c.]

Theorem. Let f be an integrable function on [a, b], and define F (x) =
∫ x

a
f(t) dt for

x ∈ [a, b]. Then F is continuous on [a, b].
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Theorem. (First Fundamental Theorem of Calculus.) Suppose f is an integrable function
on [a, b] and g is a differentiable function on [a, b] satisfying g′(x) = f(x) for x ∈ [a, b]. Then∫ b

a
f = g(b)− g(a).

Theorem. (Second Fundamental Theorem of Calculus.) Let f be a continuous function on
[a, b], and define F (x) =

∫ x

a
f for x ∈ [a, b]. Then F is differentiable on [a, b] and F ′(x) = f(x)

for x ∈ [a, b]. [In fact, if we only assume that f is continuous at some point c ∈ [a, b], then
F is differentiable at c, and F ′(c) = f(c).]

Theorem. (Properties of limits of sequences.) [Insert assertions about limits of sums,
differences, constant multiples, products, and quotients.]

Theorem. (Monotone Convergence Theorem.) An increasing sequence converges if and
only if it is bounded (above). A decreasing sequence converges if and only if it is bounded
(below). An increasing sequence that is not bounded above diveges to +∞. A decreasing
sequence that is not bounded below diverges to −∞.

Theorem. (Cauchy Convergence Theorem.) A sequence converges if and only if it is Cauchy.

Theorem. (Linearity of Infinite Series.) If
∑∞

k=1 ak and
∑∞

k=1 bk are convergent series, then∑∞
k=1(ak + bk) is convergent, and

∑∞
k=1(ak + bk) =

∑∞
k=1 ak +

∑∞
k=1 bk. If

∑∞
k=1 ak is a

convergent series and c ∈ R, then
∑∞

k=1 cak converges and
∑∞

k=1 cak = c
∑∞

k=1 ak.

Theorem. (Geometric Series.) The geometric series
∑∞

n=0 ar
n converges to a

1−r if |r| < 1.
If |r| ≥ 1 (and a 6= 0), then the series diverges.

Theorem. (p-series). The p-series
∑∞

n=1
1
np converges if p > 1 and diverges to +∞ if p ≤ 1.

Theorem. (n-th Term Test.) If the sequence {ak}∞k=1 does not converge to 0, then the series∑∞
k=1 an diverges.

Theorem. (Ratio Test.) Suppose that lim
k→∞

|ak+1|
|ak|

= L (where L can be a number or +∞).

If L < 1, then the series
∑∞

k=1 ak converges absolutely. If L > 1, then the series diverges.
(The case L = 1 gives no information about the series.)

Theorem. If the series
∑∞

k=1 ak converges absolutely, then it converges.

Theorem. (Alternating Series Test.) Let {ak}∞k=1 be a sequence of positive terms. If the
sequence is decreasing and lim

k→∞
ak = 0, then the alternating series

∑∞
k=1(−1)k+1ak converges.

Theorem. Suppose that {fn}∞n=1 is a sequence of continuous functions that converges
uniformly to a function f(x) on an interval I. Then f is continuous on I.

Theorem. Suppose that {fn}∞n=1 is a sequence of functions that are integrable on the
interval [a, b] and that the sequence converges uniformly to a function f(x) on [a, b]. Then

f is integrable on [a, b], and lim
n→∞

( ∫ b

a
fn(x) dx

)
=
∫ b

a
f(x) dx.
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