Math 331 Sample Solutions for Homework 2

Problem 1. Prove using only the definition of real numbers as Dedekind cuts and the
definitions of + and < in terms of Dedekind cuts: If a, 5,0 € R and a < 3, then a4+ < +9.

Suppose «, 3,0 € R and a < . To show a4+ < S+ 9, we must show o+ C f+6. Let
p € a+ 0. We must show p € 5+ 9. By definition of addition of Dedekind cuts, p = a + ¢
where a € o and ¢ € §. Since a < § and a € «, then a € . Since a € § and ¢ € , then
a+c€ [+ 6. Since p = a + ¢, we have shown p € § + 9.

My answer is, in fact, incomplete. To show o+ < 8 + 0, we must show that o+ 0 is a
proper subset of 5+ 0. I have shown oo+ 9 C 8+ 9, but it remains to show o+ 9 # 3+ 6.

Problem 2 (From Problem 1.3.7 in the textbook). [From Problem 1.3.7 in the textbook]
Suppose that (F,+,-) is a field, and S C F. We say that S is a subfield of F if it is a field
under the same addition and multiplication as F. To show that S is a subfield of F, it is
enough to show that 0 € S, 1 € S, and S is closed under addition, multiplication, taking
additive inverses, and taking multiplicative inverses..

Let Q[v2] = {r+sv2|r, s € Q}. Show that Q[v/2] is a subfield of R. (Note: Remember
that r and s can be zero in r + sv/2.)

Let S = Q[v2].
1. 0 € S, since it can be written as 0 = 0 + 0v/2, and 1 € S because 1 = 1 + 0v/2.

2. Let a,b € S. Then a = r + sv/2 and b = p + ¢v/2 for some r,s,p,q¢ € Q. Then
a+b=(r+svV2)+(p+qv2) = (r+p) +(s+q)V2, and r +p and s + ¢ are in Q
because Q is closed under addition. So, a +0b € S. Thus, S is closed under addition.

3. With a and b as in item 2, ab = (r + sv2)(p+qv2) = (rp+rqV/2+psv2 +qs(v/2)? =
(rp + 2¢s) + (rq + ps)v/2, which is in S because Q is closed under multiplication and
addition. Thus, S is closed under multiplication.

4. Let a € S, where a = r + sv/2. Then —a = (—r) + (—s)v/2, which is in S. So, the
additive inverse of an element of S isin S.

5. Finally, let 7 + sv/2 € S be a non-zero element of S. Saying it is non-zero means
at least one of r or s is non-zero. Note that r? — 2s? # 0. (Suppose 72 — 2s% = 0.
Then r? = 2s*. Since one of r and s is non-zero and 72 = 2s?, they both must be

non-zero. But then we have 2 = Z—z, and 2 = %, which is impossible because v/2 is
not rational.) We have (r + S\/§) (:;fgg) = :z:gzz = 1. So the multiplicative inverse

of r + sv/2 is r—sv2 which can be written as 5=+ ﬁﬁ, which is in S. Thus,

r2—2s2"
the multiplicative inverse of any non-zero element of S is in .S.

Problem 3 (Problem 1.3.11 from the textbook). Let (F,+,-) be an ordered field. Use the
definition of # < y and the order axioms to prove the transitive property of <. That is, show
that for any a,b,c € F, if a < b and b < ¢, then a < ¢. [Note: Since F is not necessarily R,
you can’t use common facts that you know about R. You can only use the actual definition
and axioms.]



Let a,b,c € F. Suppose a < b and b < ¢. Let P be the set of positive elements of F.
Since a < b, then by definition, b — a € P. Similarly, ¢ — b € P. Since P is closed under
addition, (b—a)+(c—0b) € P. Using properties of addition and additive inverse, this becomes
¢ —a € P. And then, by definition of “less than,” a < c.

Problem 4. (a) Let 01,0, ..., O be some finite number of open subsets of R. Prove that
their intersection, ﬂle O;, is open. (Hint: Use the characterization of open that involves
e > 0. Start by taking arbitrary x € ﬂle O;.)

(b) Show that the intersection of an infinite number of open sets is not necessarily open
by finding (2, (—1—2,1+ ). (Justify your answer!)

(a) A set G is open if for all x € G, there is an € > 0 such that (r — e,z +¢) C G. Let
x € ﬂle O;. We must find some € > 0 such that (xr — e,z +¢) C ﬂle O;. By definition
of intersection, x € O; for every i. Since O; is open, then by definition, we can find g; > 0
such that (x — g,z +¢;) C O;. Let ¢ = min(ey,e9,...,6;). Then € > 0 and for each 1,
(x —eg,x+¢e) C(x—ex+¢e) C O, Since this is true for i = 1,2,...,k, we see that
(r —e,x4+¢) SN, O

(b) The intervals ( —1— 1,1+ 1) are open sets, but (72, (=1 — 2,1+ 1) =[-1,1],
which is not open, so the intersection of infinitely many open sets does not have to be open.
To see that the intersection is [—1, 1], note that [—1,1] C ( -1- %, 1+ %) for all n, so

[—1,1] is a subset of their intersection. On the other hand, if z > 1, then z < 1 + % for
some n € N, so z is not in the intersection. That is, no number bigger than 1 is in the
intersection. Similarly, no number less than —1 is in the intersection. So the intersection is
exactly [—1,1].

Problem 5. Consider the unbounded closed interval [0,00). Find an open cover of this
interval that has no finite subcover. (This problem shows that the hypothesis that the interval
is bounded cannot be removed from the Heine-Borel Theorem. Use a simple example, but
justify your answer!)

One possible answer{(—1,n)|n =0,1,2,...}. Consider any finite subset, {(—1,n;)|i =
1,2,...,k}. Let N =14 max(ny,ns,...,n;) Then N is not in any of the sets (—1,n;), so
those sets do not cover all of [0, cc]. That is, there is no finite subset of the open cover that
is itself a cover.

Another possible answer is {(n—1,n41) |n =0,1,2,... }. Note that each of the intervals
in this set covers exactly one integer. A subset containing k£ open intervals from the open
cover will cover only k integers, so does not cover all of [0, 00).

Problem 6 (Problem 1.4.3 from the textbook). Suppose that {O,|a € A} is an open
cover of the interval [0, 1). Suppose furthermore that 1 € |J,.4 Oa. Prove that there is finite
subcover of [0,1) from {O, |a € A}. [This question tests your understanding of the proof
of the Heine-Borel Theorem.]

Since 1 € (J,cq O, there is a § € A such that 1 € Og. Since Op is open, there is an
e > 0 such that (1 —¢,14¢) € Op. Choose any b € (0,1) such that 1 —e¢ < b < 1. The
bounded, closed interval [0,b] is a subset of [1,0), and so is covered by {O,|a € A}. By
the Heine-Borel Theorem, there is a finite subcover, {O,,, On,, - .., 04, }, of [0,b]. But Op
covers [b, 1], so {Og, On,, Oays - .., Oy, } s a finite subcover for all of [0, 1).



[For an even easier proof, note that since [0,1) C (J,cy Oa} and 1 € [J,c4 Os}, then
in fact {O, |« € A} is an open cover of the closed, bounded interval [0, 1]. By the Heine-
Borel theorem, there is a finite subcover of [0, 1], which is automatically a subcover for [0, 1)
because [0,1) C [0, 1].]

Problem 7. Let f(x) be a real-valued function that is defined on an interval /. We say that
f is bounded above on I if there is a number M such that f(z) < M for all z € I.

Suppose that f(z) is defined on the bounded, closed interval [a, b]. Suppose that for every
x € |a, b], there is an € > 0 such that f is bounded above on the interval (x — e,z +¢). Use
the Heine-Borel theorem to prove that f is bounded above on [a,b]. (Hint: Compare this to
an example about functions that was done in class.)

For each = € [a, V], let £, > 0 such that f is bounded above on the inteval (z —e,, x+¢,),
and let M, be an upper bound for x on that interval. That is, f(t) < M, for all ¢ in the
interval (z—e,, x+e¢,). The collection of open intervals {(x—¢e,,z+¢,) |z € [a,b]} is an open
cover of [a, b]. By the Heine-Borel Theorem, there is a finite subcover, {(x —e,,,x+¢,,) |i =
1,2,...,k}. Let M = max(M,,, M,,,...,M,,). We claim that M is an upper bound for
f on all of [a,b]. Let t € [a,b]. We must show f(t) < M. But there is a j such that
t € (x — €s,,7 + &), and it follows that f(t) < M,, < M.




